Pangenome evaluation of gene essentiality in Streptococcus pyogenes

Author:

Jespersen Magnus G.1ORCID,Hayes Andrew J.1,Tong Steven Y. C.23ORCID,Davies Mark R.1ORCID

Affiliation:

1. Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia

2. Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia

3. Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia

Abstract

ABSTRACT Bacterial species often consist of strains with variable gene content, collectively referred to as the pangenome. Variations in the genetic makeup of strains can alter bacterial physiology and fitness. To define biologically relevant genes of a genome, genome-wide transposon mutant libraries have been used to identify genes essential for survival or virulence in a given strain. Such phenotypic studies have been conducted in four different genotypes of the human pathogen Streptococcus pyogenes , yet challenges exist in comparing results across studies conducted in different genetic backgrounds and conditions. To advance genotype to phenotype inferences across different S. pyogenes strains, we built a pangenome database of 249 S . pyogenes reference genomes. We systematically re-analyzed publicly available transposon sequencing datasets from S. pyogenes using a transposon sequencing-specific analysis pipeline, Transit. Across four genetic backgrounds and nine phenotypic conditions, 355 genes were essential for survival, corresponding to ~24% of the core genome. Clusters of Orthologous Genes (COG) categories related to coenzyme and lipid transport and growth functions were overrepresented as essential. Finally, essential operons across S. pyogenes genotypes were defined, with an increased number of essential operons detected under in vivo conditions. This study provides an extendible database to which new studies can be added, and a searchable html-based resource to direct future investigations into S. pyogenes biology. IMPORTANCE Streptococcus pyogenes is a human-adapted pathogen occupying restricted ecological niches. Understanding the essentiality of genes across different strains and experimental conditions is important to direct research questions and efforts to prevent the large burden of disease caused by S. pyogenes . To this end we systematically reanalyzed transposon sequencing studies in S. pyogenes using transposon sequencing-specific methods, integrating them into an extendible meta-analysis framework. This provides a repository of gene essentiality in S. pyogenes which was used to highlight specific genes of interest and for the community to guide future phenotypic studies.

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3