Metagenomic investigation reveals bacteriophage-mediated horizontal transfer of antibiotic resistance genes in microbial communities of an organic agricultural ecosystem

Author:

Zhang Yujie1ORCID,Kitazumi Ai2,Liao Yen-Te1ORCID,de los Reyes Benildo G.2,Wu Vivian C. H.1ORCID

Affiliation:

1. U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Western Regional Research Center , Albany, California, USA

2. Department of Plant and Soil Science, Texas Tech University , Lubbock, Texas, USA

Abstract

ABSTRACT Agricultural microbiomes are major reservoirs of antibiotic resistance genes (ARGs), posing continuous risks to human health. To understand the role of bacteriophages as vehicles for the horizontal transfer of ARGs in the agricultural microbiome, we investigated the diversity of bacterial and viral microbiota from fecal and environmental samples on an organic farm. The profiles of the microbiome indicated the highest abundance of Bacteroidetes, Firmicutes, and Proteobacteria phyla in animal feces, with varying Actinobacteria and Spirochaetes abundance across farm animals. The most predominant composition in environmental samples was the phylum Proteobacteria. Compared to the microbiome profiles, the trends in virome indicated much broader diversity with more specific signatures between the fecal and environmental samples. Overall, viruses belonging to the order Caudovirales were the most prevalent across the agricultural samples. Additionally, the similarities within and between fecal and environmental components of the agricultural environment based on ARG-associated bacteria alone were much lower than those of total microbiome composition. However, there were significant similarities in the profiles of ARG-associated viruses across the fecal and environmental components. Moreover, the predictive models of phage-bacterial interactions on bipartite ARG transfer networks indicated that phages belonging to the order Caudovirales, particularly in the Siphoviridae family, contained diverse ARG types in different samples. Their interaction with various bacterial hosts further implied the important role of bacteriophages in ARG transmission across bacterial populations. Our findings provided a novel insight into the potential mechanisms of phage-mediated ARG transmission and their correlation with resistome evolution in natural agricultural environments. IMPORTANCE Antibiotic resistance has become a serious health concern worldwide. The potential impact of viruses, bacteriophages in particular, on spreading antibiotic resistance genes is still controversial due to the complexity of bacteriophage-bacterial interactions within diverse environments. In this study, we determined the microbiome profiles and the potential antibiotic resistance gene (ARG) transfer between bacterial and viral populations in different agricultural samples using a high-resolution analysis of the metagenomes. The results of this study provide compelling genetic evidence for ARG transfer through bacteriophage-bacteria interactions, revealing the inherent risks associated with bacteriophage-mediated ARG transfer across the agricultural microbiome.

Funder

USDA | Agricultural Research Service

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3