Whole-genome sequencing provides insights into a novel species: Providencia hangzhouensis associated with urinary tract infections

Author:

Dong Xu1ORCID,Yu Yuyun1,Liu Jiaying1,Cao Dan1,Xiang Yanghui1,Bi Kefan1,Yuan Xin1,Li Shengchao2,Wu Tiantian1,Zhang Ying1ORCID

Affiliation:

1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, China

2. Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, China

Abstract

ABSTRACT Providencia rettgeri is a clinically significant opportunistic pathogen that is involved in urinary tract infections. Due to the resolution limitations of identification, distinguishing P. rettgeri from closely related species is challenging by commercial biochemical test systems. Here, we first reported a novel species, Providencia hangzhouensis , which had been misidentified as P. rettgeri . Exhibiting ≤91.97% average nucleotide identity (ANI) and ≤46.10% in silico DNA-DNA hybridization values with all known Providencia species, P. hangzhouensis falls well beneath the established species-defining thresholds. We conducted a population genomics analysis of P. hangzhouensis isolates worldwide. Our study revealed that P. hangzhouensis has emerged in many countries and has formed several transmission clusters. We found that P. hangzhouensis shared the highest ANI values (91.54% and 91.97%) with P. rettgeri and P. huaxiensis , respectively. The pan-genome analysis revealed that these three species possessed a similar component of pan-genomes. Two genes associated with metabolism, folE2 and ccmM , were identified to be specific to P. hangzhouensis . Furthermore, we also observed that carbapenem-resistance genes frequently occur in P. hangzhouensis with the bla IMP-27 being the most prevalent (46.15%; 36/78). The emergence of P. hangzhouensis is often accompanied by extended-spectrum β-lactamase and carbapenem-resistance genes, and calls for tailored surveillance of this species as a clinically relevant species in the future. IMPORTANCE Our study has identified and characterized a novel species, Providencia hangzhouensis , which is associated with urinary tract infections and was previously misidentified as Providencia rettgeri . Through this study, we have identified specific genes unique to P. hangzhouensis , which could serve as marker genes for rapid PCR identification. Additionally, our findings suggest that the emergence of P. hangzhouensis is often accompanied by extended-spectrum β-lactamase and carbapenem-resistance genes, emphasizing the need for attention to clinical management and the importance of accurate species identification and proper drug use.

Funder

National Infectious Disease Medical Center startup fund

Jinan Microecological Biomedicine Shandong Laboratory project

Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3