Genomic revisitation and reclassification of the genus Providencia

Author:

Dong Xu12ORCID,Jia Huiqiong34,Yu Yuyun1,Xiang Yanghui1,Zhang Ying12ORCID

Affiliation:

1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Guangzhou, China

3. Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

4. Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, Zhejiang, China

Abstract

ABSTRACT Members of Providencia , although typically opportunistic, can cause severe infections in immunocompromised hosts. Recent advances in genome sequencing provide an opportunity for more precise study of this genus. In this study, we first identified and characterized a novel species named Providencia zhijiangensis sp. nov. It has ≤88.23% average nucleotide identity (ANI) and ≤31.8% in silico DNA-DNA hybridization (dDDH) values with all known Providencia species, which fall significantly below the species-defining thresholds. Interestingly, we found that Providencia stuartii and Providencia thailandensis actually fall under the same species, evidenced by an ANI of 98.59% and a dDDH value of 90.4%. By fusing ANI with phylogeny, we have reclassified 545 genomes within this genus into 20 species, including seven unnamed taxa (provisionally titled Taxon 1–7), which can be further subdivided into 23 lineages. Pangenomic analysis identified 1,550 genus-core genes in Providencia , with coenzymes being the predominant category at 10.56%, suggesting significant intermediate metabolism activity. Resistance analysis revealed that most lineages of the genus (82.61%, 19/23) carry a high number of antibiotic-resistance genes (ARGs) and display diverse resistance profiles. Notably, the majority of ARGs are located on plasmids, underscoring the significant role of plasmids in the resistance evolution within this genus. Three species or lineages ( P. stuartii , Taxon 3, and Providencia hangzhouensis L12) that possess the highest number of carbapenem-resistance genes suggest their potential influence on clinical treatment. These findings underscore the need for continued surveillance and study of this genus, particularly due to their role in harboring antibiotic-resistance genes. IMPORTANCE The Providencia genus, known to harbor opportunistic pathogens, has been a subject of interest due to its potential to cause severe infections, particularly in vulnerable individuals. Our research offers groundbreaking insights into this genus, unveiling a novel species, Providencia zhijiangensis sp. nov., and highlighting the need for a re-evaluation of existing classifications. Our comprehensive genomic assessment offers a detailed classification of 545 genomes into distinct species and lineages, revealing the rich biodiversity and intricate species diversity within the genus. The substantial presence of antibiotic-resistance genes in the Providencia genus underscores potential challenges for public health and clinical treatments. Our study highlights the pressing need for increased surveillance and research, enriching our understanding of antibiotic resistance in this realm.

Funder

National Infectious Disease Medical Center startup fund

Jinan Microecological Biomedicine Shandong Laboratory project

Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang

Publisher

American Society for Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3