Chitosan oligosaccharide improves intestinal homeostasis to achieve the protection for the epithelial barrier of female Drosophila melanogaster via regulating intestinal microflora

Author:

Wang Lu1,Zhang Cheng1,Fan Shuhang1,Wang Jianfeng2,Zhou Weihao1,Zhou Zhaohui1,Liu Yuhang1,Wang Qianna1,Liu Wei3,Dai Xianjun14ORCID

Affiliation:

1. College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China

2. Hangzhou Original Seed Farm, Hangzhou, China

3. Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China

4. Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou, Zhejiang, China

Abstract

ABSTRACT Chitosan oligosaccharide (COS) is a new type of marine functional oligosaccharide with biological activities such as regulating intestinal microflora and improving intestinal immunity. In this study, female Drosophila melanogaster was used as a model organism to evaluate the effect of COS on intestinal injury by H 2 O 2 induction, and its mechanism was explored through the analysis of intestinal homeostasis. The results showed that 0.25% of COS could effectively prolong the lifespan of stressed female D. melanogaster by increasing its antioxidant capacity and maintaining intestinal homeostasis, which included protecting the mechanical barrier, promoting the chemical barrier, and regulating the biological barrier by affecting its autophagy and the antioxidant signaling pathway. Additionally, the protective effect of COS on the intestinal barrier and homeostasis of D. melanogaster under oxidative stress status is directly related to its regulation of the intestinal microflora, which could decrease excessive autophagy and activate the antioxidant system to promote health. IMPORTANCE The epithelial barrier plays an important role in the organism’s health. Chitosan oligosaccharide (COS), a new potential prebiotic, exhibits excellent antioxidant capacity and anti-inflammatory effects. Our study elucidated the protective mechanisms of COS on the intestinal barrier of Drosophila melanogaster under oxidative stress, which could provide new insights into COS application in various industries, such as food, agriculture, and medicine.

Funder

Science and Technology Development of Zhejiang province

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3