Entomopathogenic Bacillus cereus impairs the fitness of the spotted‐wing drosophila, Drosophila suzukii

Author:

He Nana1,Zhou Shaojie1,Zhou Chuanming1,Yang Weikang1,Zhang Sheng1,Yan Deqiang1,Ji Xiaowen1,Liu Wei1ORCID

Affiliation:

1. School of Plant Protection Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management Hefei China

Abstract

AbstractDrosophila suzukii is a notorious pest which causes devastating damage to thin‐skinned fruits, and the larvae feed on the fruit, causing extensive agricultural economic loss. The current application of insecticides to manage this pest results in serious resistance and environmental hazards, so an alternative strategy for D. suzukii biocontrol is urgently needed. Here, we reported that entomopathogenic Bacillus cereus has the potential to biocontrol D. suzukii. We isolated and identified the bacterial strain, B. cereus H1, that was detrimental to the fitness of both D. suzukii progenies and parents. D. suzukii was robustly repelled to depositing eggs on the halves with metabolites of B. cereus H1. Both males and females of D. suzukii were susceptible to B. cereus H1. B. cereus H1 significantly arrested larval development with at least 40% lethal larvae. The median lethal time (LT50) of males and females of D. suzukii challenged with B. cereus H1 was 3 and 2 d, respectively. Moreover, B. cereus H1 disrupted the intestinal integrity and pH value of D. suzukii and resulted in an increase in bacterial load of guts and hemolymph. Mechanistically, infection of B. cereus H1 led to the activation of the dual oxidase (DUOX)‐ROS‐Jun N‐terminal kinase (JNK) pathway. The findings showed that the entomopathogen B. cereus H1 could potentially act as a biological control agent against D. suzukii, advancing fundamental concepts of integrated pest management programs against D. suzukii.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3