Adaptation of rhizosphere bacterial communities of drought-resistant sugarcane varieties under different degrees of drought stress

Author:

Dao Jicao123,Xing Yuanjun123,Chen Chunyi123,Chen Mianhe123,Wang Ziting123ORCID

Affiliation:

1. Guangxi Key Laboratory of Sugarcane Biology , Nanning, Guangxi, China

2. State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University , Nanning, Guangxi, China

3. College of Agronomy, Guangxi University , Nanning, Guangxi, China

Abstract

ABSTRACT Sugarcane is highly sensitive to changes in moisture, and increased drought severely restricts its growth and productivity. Recent studies have shown that plant growth-promoting microorganisms are essential to reduce the adverse effects of environmental stresses, especially drought. However, our knowledge about the dynamics of rhizosphere microbial community structure in sugarcane under varying degrees of drought stress is limited. We analyzed the effects of different degrees of drought stress on the rhizosphere microbial communities of Zhongzhe 1(ZZ1) and Zhongzhe 6(ZZ6) with differences in drought resistance, by combining soil enzyme activity, nutrient content, and physiological and morphological characteristics of sugarcane roots. The results showed that rhizosphere bacterial community began to change at a field capacity of 50%, enriching the sugarcane rhizosphere with drought-resistant bacteria. The core strains of ZZ1 and ZZ6 rhizosphere enrichment were mainly Streptomycetales , Sphingomonadales , and Rhizobiales . However, compared to ZZ1, the changes in rhizosphere bacterial abundance in ZZ6 were primarily associated with the abundance of Streptomycetales as drought levels increased. Rhizobiales and Streptomycetales , enriched in the rhizosphere of ZZ6 under drought, were positively correlated with root tip number and total root length (TRL), increasing the distribution area of roots and, thus, improving water and nutrient uptake by the roots thereby enhancing the resistance of sugarcane to drought stress. This research enhances our understanding of the composition of the rhizosphere microbial community in sugarcane under different levels of drought stress and its interaction with the roots, thereby providing valuable insights for enhancing drought resistance in sugarcane. Importance Drought stress is expected to further increase in intensity, frequency, and duration, causing substantial losses in sugarcane yields. Here, we exposed sugarcane to varying degrees of drought treatment during growth and quantified the eventual composition of the resulting sugarcane rhizosphere bacterial community groups. We found that sugarcane rhizosphere under mild drought began to recruit specific bacterial communities to resist drought stress and used the interactions of root tip number, total root length, and drought-resistant strains to improve sugarcane survival under drought. This research provides a theoretical basis for the rhizosphere microbiome to help sugarcane improve its resistance under different levels of drought stress.

Funder

MOST | National Natural Science Foundation of China

Guangxi Natural Science Foundation

Sugarcane Research Foundation of Guangxi University

Innovation Project of Guangxi Graduate Education

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3