Coordination of Root Traits and Rhizosphere Microbial Community in Tea (Camellia sinensis L.) Plants under Drought and Rehydration

Author:

Zhang Sihai1,Han Xuemei2,Zhu Yangchun1,Tan Xiangfeng3ORCID

Affiliation:

1. School of Ecology, Lishui University, Lishui 323000, China

2. College of Life Sciences, Hainan Normal University, Haikou 571158, China

3. Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

Abstract

Soil drought and rehydration have an immense impact on plant physiology and productivity, whereas the response of plant–microbe interactions to varied water availability remains largely elusive. In this study, two tea (Camellia sinensis L.) cultivars, Longjing43 and Yingshuang, were subjected to drought followed by rehydration. Soil drought significantly induced the elongation of taproots in the Yingshuang cultivar after two weeks of drought. Moreover, the four-week drought significantly reduced the root dry mass and root nitrogen, phosphorus, and potassium concentrations in both tea cultivars. Two-week rehydration recovered the root potassium concentration in the two tea cultivars, revealing the rapid response of root potassium levels to water conditions. Drought and rehydration also resulted in shifts in rhizosphere microbial diversity. A four-week drought reduced microbial alpha diversity in Longjing43 but not in the Yingshuang cultivar, and rehydration was effective in restoring alpha diversity in Longjing43. The rhizosphere microbial community tended to recover to the initial stages after rehydration in Longjing43 but not in the other cultivar. In addition, 18 microbial genera were identified as the featured microbial taxa in response to varied water availability, and a rare genus Ignavibacterium was significantly increased in the Longjing43 cultivar by rehydration after a four-week drought. Furthermore, root nitrogen, phosphorus, potassium levels, and dry mass were positively correlated with the microbial alpha diversity, while the taproot length was negatively correlated, suggesting the crucial role of plant–microbe interactions in response to drought and rehydration. Moreover, the root phosphorus concentration and taproot length also had significant effects on microbial beta diversity, further confirming their effects on the community structure of the rhizosphere microbiome. Overall, this study provides insights into the effects of drought on plant–microbe interactions in the rhizosphere of tea plants. These findings are important for harnessing the roles of the tea rhizosphere microbiome under drought.

Funder

Public Welfare Projects of Lishui City

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3