Rapid Prediction of Multidrug-Resistant Klebsiella pneumoniae through Deep Learning Analysis of SERS Spectra

Author:

Lyu Jing-Wen12,Zhang Xue Di13,Tang Jia-Wei4,Zhao Yun-Hu2,Liu Su-Ling2,Zhao Yue2,Zhang Ni2,Wang Dan5,Ye Long2,Chen Xiao-Li2,Wang Liang26,Gu Bing12

Affiliation:

1. Department of Laboratory Medicine, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China

2. Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China

3. Laboratory Medicine, The Affiliated Xuzhou Infectious Diseases Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China

4. Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Jiangsu Province, Xuzhou, China

5. Laboratory Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China

6. School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia

Abstract

This study focuses on the simultaneous discrimination and prediction ofKlebsiella pneumoniaestrains with carbapenem-sensitive, carbapenem-resistant, and polymyxin-resistant phenotypes. The implementation of CNN plus an attention mechanism makes the highest prediction accuracy at 99.46%, which confirms the diagnostic potential of the combination of SERS spectroscopy with the deep learning algorithm for antibacterial susceptibility testing in clinical settings.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Jiangsu Province

Research Foundation for Advanced Talents of Guangdong Provincial People's hospitali

Jiang-Su Qing-Lan Project

Science and Technology Innovation Team of Young Scientists

Xuzhou Key R&D Plan Social Development Project

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3