Loss of virulence during culture of Aeromonas salmonicida at high temperature

Author:

Ishiguro E E,Kay W W,Ainsworth T,Chamberlain J B,Austen R A,Buckley J T,Trust T J

Abstract

The effect of growth temperature on the loss of virulence of the fish pathogen Aeromonas salmonicida was investigated. Three virulent strains were grown in Trypticase soy broth at temperatures ranging from 22 to 30 degrees C. Growth at a higher-than-optimal temperature (26 to 27 degrees C for the three strains studied) resulted in the selection of spontaneous attenuated derivatives in the initial bacterial population. For example, virulent bacteria represented less than 10% of the population of a culture grown at 30 degrees C, and attenuated derivatives were easily isolated by streaking the culture on solid medium and picking single colonies. Virulent strains autoaggregated during growth and possessed a cell wall layer (A-layer) external to the outer membrane, as previously described. Attenuated strains did not autoaggregate and did not possess the A-layer. The A-layer apparently shielded bacteriophage receptors and a mannose-specific yeast agglutinin located in the outer membrane. Thus, virulent strains exhibited impaired adsorption of phages, whereas attenuated strains were phage sensitive. Furthermore, attenuated strains agglutinated yeast cells but virulent strains did not. The attenuated strains had higher maximum growth temperatures than their virulent parent strains, and this accounts for their selection at high temperatures. It is proposed that the A-layer contributes significantly to the physical properties of the A. salmonicida cell envelope and that these physical properties of the A. salmonicida cell envelope and that these physical change upon loss of the A-layer to permit growth at a higher-than-usual temperature.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3