Cell surface hydrophobicity of pigmented and nonpigmented clinical Serratia marcescens strains

Author:

Rosenberg M,Blumberger Y,Judes H,Bar-Ness R,Rubinstein E,Mazor Y

Abstract

The cell surface hydrophobicity of 10 pigmented and 4 nonpigmented clinical Serratia marcescens strains was studied, based on the ability of the strains to adhere to hydrocarbons and to polystyrene. The cell surface hydrophobicity depended greatly on growth temperature; all of the strains tested were adherent following growth at 30 degrees C, whereas none was adherent following growth at 38 degrees C. In previous studies, the pigment prodigiosin has been cited as responsible for cell surface hydrophobicity in various Serratia strains. However, the observed ability of the nonpigmented strains to adhere to the test hydrocarbons and to polystyrene indicates that Serratia strains can possess hydrophobic surface properties in the absence of this pigment. Moreover, strain 1785 cells were adherent whether they were grown at 30 or 36.5 degrees C, even though pigment was not synthesized at the higher temperature. In Escherichia coli correlations have been noted between increased cell surface hydrophobicity and the presence of mannose-specific adhesins; no such relationship was found in the S. marcescens strains tested. The expression of cell surface hydrophobicity in clinical S. marcescens strains at 30 degrees C and the loss of hydrophobicity at host temperatures raise the possibility that infective cells from the environment are initially hydrophobic, but lose this property upon subsequent proliferation within a host.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference32 articles.

1. New fimbrial hemagglutinin in Serratia species;Adegbola R. A.;Infect. Immun.,1982

2. Surface concentration of marine bacteria;Bezdek H. F.;Limnol. Oceanogr.,1972

3. Seven problems in bubble and jet drop researches;Blanchard D. C.;Limnol. Oceanogr.,1978

4. Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles;Blanchard D. C.;AppI. Environ. Microbiol.,1982

5. Bubble scavenging of bacteria in freshwater quickly produces bacterial enrichment in airborne jet drops;Blanchard D. C.;Limnol. Oceanogr.,1981

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3