Author:
Mangal Surabhi,Dua Tamanna,Chauhan Monika,Dhingra Neelima,Chhibber Sanjay,Singh Vasundhara,Harjai Kusum
Abstract
To address the issue of multidrug resistance in Pseudomonas aeruginosa, a novel catechol–zingerone conjugate (1) linked via a non-hydrolyzable 1,2,3-triazole linker was synthesized and subjected to biological evaluation based on the Trojan horse strategy. To enhance the efficacy, catechol, a xenosiderophore, utilized by P. aeruginosa for iron assimilation, and the dietary phytochemical zingerone, known for its anti-virulent activity against Pseudomonas aeruginosa, were exploited in the present study. Theoretical validation of conjugate (1) was conducted by in silico molecular docking analysis to determine the interaction with outer membrane transport receptor PirA and quorum sensing signal receptors. In addition, nine-fold binding affinity of Conjugate (1) toward PirA (5FP2) in comparison to its natural ligand catechol with D-score −1.13 Å authenticated the designed Trojan horse drug. Conjugate (1) showed stronger anti-virulent activity than zingerone; hence, it exhibited a promising anti-biofilm efficacy as assessed by crystal violet assay and visualized by FESEM toward P. aeruginosa. Encouraging results against P. aeruginosa in terms of quorum sensing regulated virulence factors, motility phenotypes, and biofilm formation with no cell cytotoxicity and could help open hitherto unexplored possibilities of establishing Trojan horse drugs as a successful approach against multidrug resistance in P. aeruginosa.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献