Affiliation:
1. Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-4960
Abstract
ABSTRACT
Type III secretion is used by many gram-negative bacterial pathogens to directly deliver protein toxins (effectors) into targeted host cells. In all cases, secretion of effectors is triggered by host cell contact, although the mechanism is unclear. In
Pseudomonas aeruginosa
, expression of all type III secretion-related genes is up-regulated when secretion is triggered. We were able to visualize this process using a green fluorescent protein reporter system and to use it to monitor the ability of bacteria to trigger effector secretion on cell contact. Surprisingly, the action of one of the major type III secreted effectors, ExoS, prevented triggering of type III secretion by bacteria that subsequently attached to cells, suggesting that triggering of secretion is feedback regulated. Evidence is presented that translocation (secretion of effectors across the host cell plasma membrane) of ExoS is indeed self-regulated and that this inhibition of translocation can be achieved by either of its two enzymatic activities. The translocator proteins PopB, PopD, and PcrV are secreted via the type III secretion system and are required for pore formation and translocation of effectors across the host cell plasma membrane. Here we present data that secretion of translocators is in fact not controlled by calcium, implying that triggering of effector secretion on cell contact represents a switch in secretion specificity, rather than a triggering of secretion per se. The requirement for a host cell cofactor to control effector secretion may help explain the recently observed phenomenon of target cell specificity in both the
Yersinia
and
P. aeruginosa
type III secretion systems.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference78 articles.
1. Int J. Med. Microbiol.
2. Aili, M., E. L. Isaksson, B. Hallberg, H. Wolf-Watz, and R. Rosqvist. 2006. Functional analysis of the YopE GTPase-activating protein (GAP) activity of Yersinia pseudotuberculosis. Cell. Microbiol. 8 : 1020-1033.
3. Barbieri, J. T., and J. Sun. 2004. Pseudomonas aeruginosa ExoS and ExoT. Rev. Physiol. Biochem. Pharmacol. 152 : 79-92.
4. Bhakdi, S., H. Bayley, A. Valeva, I. Walev, B. Walker, M. Kehoe, and M. Palmer. 1996. Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch. Microbiol. 165 : 73-79.
5. Characterization of the
Yersinia enterocolitica
Type III Secretion ATPase YscN and Its Regulator, YscL
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献