Multilocus Sequence Typing, Pulsed-Field Gel Electrophoresis, and fla Short Variable Region Typing of Clonal Complexes of Campylobacter jejuni Strains of Human, Bovine, and Poultry Origins in Luxembourg

Author:

Ragimbeau Catherine1,Schneider François1,Losch Serge2,Even Jos1,Mossong Joël1

Affiliation:

1. National Health Laboratory, Microbiology, P.O. Box 1102, L-1011 Luxembourg

2. Veterinary Medicine Laboratory, Luxembourg, Luxembourg

Abstract

ABSTRACT Campylobacter jejuni is the most common cause of bacterial gastroenteritis in Luxembourg, with a marked seasonal peak during summer. The majority of these infections are thought to be sporadic, and the relative contribution of potential sources and reservoirs is still poorly understood. We monitored human cases from June to September 2006 ( n = 124) by molecular characterization of isolates with the aim of rapidly detecting temporally related cases. In addition, isolates from poultry meat ( n = 36) and cattle cecal contents ( n = 48) were genotyped for comparison and identification of common clusters between veterinary and human C. jejuni populations. A total of 208 isolates were typed by sequencing the fla short variable region, macrorestriction analysis resolved by pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). We observed a high diversity of human strains during a given summer season. Poultry and human isolates had a higher diversity of sequence types than isolates of bovine origin, for which clonal complexes CC21 (41.6%) and CC61 (18.7%) were predominant. CC21 was also the most common complex found among human isolates (21.8%). The substantial concordance between PFGE and MLST results for this last group of strains suggests that they are clonally related. Our study indicates that while poultry remains an important source, cattle could be an underestimated reservoir of human C. jejuni cases. Transmission mechanisms of cattle-specific strains warrant further investigation.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3