Signal Detection and Target Gene Induction by the CpxRA Two-Component System

Author:

DiGiuseppe Patricia A.1,Silhavy Thomas J.1

Affiliation:

1. Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Abstract

ABSTRACT The Cpx pathway is a two-component signal transduction system that senses a variety of envelope stresses, including misfolded proteins, and responds by upregulating periplasmic folding and trafficking factors. CpxA resides in the inner membrane and has both kinase and phosphatase activities. CpxR, the response regulator, mediates a response by activating transcription of stress-combative genes. Signal transduction is subject to feedback inhibition via regulon member CpxP and autoamplification. Recently, it was shown that the Cpx pathway is also upregulated when cells adhere to hydrophobic surfaces and that this response is dependent on the outer membrane lipoprotein NlpE. Here we show that while NlpE is required for induction of the Cpx pathway by adhesion, induction by envelope stress and during growth is NlpE independent. We show that while all of the envelope stresses tested induce the Cpx pathway in a manner that is dependent on the periplasmic domain of CpxA, induction during growth is independent of CpxA. Therefore, we propose that the Cpx pathway can sense inducing cues that enter the signaling pathway at three distinct points. Although CpxP is not required for induction of the Cpx pathway, we show that its activity as a negative regulator of CpxA is inactivated by envelope stress. Moreover, the cpxP promoter is more inducible than any other regulon member tested. Consistent with these results, we suggest that CpxP performs a second function, most likely that of a chaperone. Finally, we show that two Cpx-regulated genes are differentially upregulated in response to different envelope stresses, suggesting the existence of three stress-responsive systems.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3