RavA‐ViaA antibiotic response is linked to Cpx and Zra2 envelope stress systems in Vibrio cholerae

Author:

Krin Evelyne1,Carvalho André12,Lang Manon12,Babosan Anamaria1,Mazel Didier1ORCID,Baharoglu Zeynep1ORCID

Affiliation:

1. Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien , Paris, France

2. Sorbonne Université, Collège doctoral , Paris, France

Abstract

ABSTRACT RavA-ViaA were reported to play a role in aminoglycoside (AG) sensitivity, but the mechanisms remain elusive. Here, we performed competition and survival experiments to confirm that deletion of ravA-viaA increases tolerance of the Gram-negative pathogen Vibrio cholerae to low and high AG concentrations during aerobic growth. Using high-throughput strategies in this species, we identify Cpx and Zra2 two-component systems as new partners of RavA-ViaA. We show that the AG tolerance of ∆ravvia requires the presence of these membrane stress sensing two-component systems. We propose that deletion of the RavA-ViaA function facilitates the response AGs because of a pre-activated state of Cpx and Zra2 membrane stress response systems. We also find an impact of these genes on vancomycin resistance, and we show that simultaneous inactivation of ravvia function together with envelope stress response systems leads to outer membrane permeabilization. Vancomycin is mostly used for Gram-positive because of its low efficiency for crossing the Gram-negative outer membrane. Targeting of the ravA-viaA operon for inactivation could be a future strategy to allow uptake of vancomycin into multidrug-resistant Gram-negative bacteria. IMPORTANCE The RavA-ViaA complex was previously found to sensitize Escherichia coli to aminoglycosides (AGs) in anaerobic conditions, but the mechanism is unknown. AGs are antibiotics known for their high efficiency against Gram-negative bacteria. In order to elucidate how the expression of the ravA-viaA genes increases bacterial susceptibility to aminoglycosides, we aimed at identifying partner functions necessary for increased tolerance in the absence of RavA-ViaA, in Vibrio cholerae . We show that membrane stress response systems Cpx and Zra2 are required in the absence of RavA-ViaA, for the tolerance to AGs and for outer membrane integrity. In the absence of these systems, the ∆ravvia strain’s membrane becomes permeable to external agents such as the antibiotic vancomycin.

Funder

Centre National de la Recherche Scientifique

Institut Pasteur

Agence Nationale de la Recherche

Fondation pour la Recherche Médicale

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3