Affiliation:
1. MRC Microbiology and Gut Biology Group, University of Dundee, Dundee
2. Englyst Carbohydrates, Research & Services Ltd., Southampton
3. School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
Abstract
ABSTRACT
In humans, nonstarch polysaccharides (NSP), such as arabinoxylans (AX), are not digested in the upper gut and provide fermentable carbon sources for bacteria growing in the large bowel. Despite the ubiquity of AX in nature, the microbiologic and physiologic consequences of AX digestion in the gut are poorly understood. In this study, we investigated the breakdown of ferulic acid-cross-linked AX (AXF) and non-cross-linked AX in children's intestinal microbiotas, using starch as a readily fermentable polysaccharide for comparative purposes. The experiments were performed using pH-controlled fermentation vessels under anaerobic conditions. The results demonstrated that there was variation in the metabolism of these polysaccharides by colonic microbiotas. AX was always degraded more slowly than starch, while ferulic acid cross-linking reduced the rate of AX fermentation, as shown by fermentation product measurements. Starch digestion was associated with significant acetate and butyrate production, whereas AX breakdown resulted in increased propionate formation. In general, the presence of fermentable carbohydrate significantly increased the total anaerobe counts and eubacterial rRNA concentrations (
P
< 0.01), while non-cross-linked AX digestion was principally associated with increased viable counts of
Bacteroides fragilis
group organisms, which was supported by increases in
Bacteroides
-
Porphyromonas
-
Prevotella
group rRNA (
P
< 0.01). Starch was considerably more bifidogenic than AX in these fermentations. In conclusion, in this study we found that the effects of AX and AXF on the microbial ecology and metabolism of intestinal microbiotas are similar in children and adults.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
153 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献