The Nuclear Corepressors NCoR and SMRT Are Key Regulators of Both Ligand- and 8-Bromo-Cyclic AMP-Dependent Transcriptional Activity of the Human Progesterone Receptor

Author:

Wagner Brandee L.1,Norris John D.1,Knotts Trina A.2,Weigel Nancy L.2,McDonnell Donald P.1

Affiliation:

1. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, 1 and

2. Department of Cell Biology, Baylor College of Medicine, Houston, Texas 770302

Abstract

ABSTRACT Previously, we defined a novel class of ligands for the human progesterone receptor (PR) which function as mixed agonists. These compounds induce a conformational change upon binding the receptor that is different from those induced by agonists and antagonists. This establishes a correlation between the structure of a ligand-receptor complex and its transcriptional activity. In an attempt to define the cellular components which distinguish between different ligand-induced PR conformations, we have determined, by using a mammalian two-hybrid assay, that the nuclear receptor corepressor (NCoR) and the silencing mediator for retinoid and thyroid hormone receptor (SMRT) differentially associate with PR depending upon the class of ligand bound to the receptor. Specifically, we observed that the corepressors preferentially associate with antagonist-occupied PR and that overexpression of these corepressors suppresses the partial agonist activity of antagonist-occupied PR. Binding studies performed in vitro, however, reveal that recombinant SMRT can interact with PR in a manner which is not influenced by the nature of the bound ligand. Thus, the inability of SMRT or NCoR to interact with agonist-activated PR when assayed in vivo may relate more to the increased affinity of PR for coactivators, with a subsequent displacement of corepressors, than to an inherent low affinity for the corepressor proteins. Previous work from other groups has shown that 8-bromo-cyclic AMP (8-bromo-cAMP) can convert the PR antagonist RU486 into an agonist and, additionally, can potentiate the transcriptional activity of agonist-bound PR. In this study, we show that exogenous expression of NCoR or SMRT suppresses all 8-bromo-cAMP-mediated potentiation of PR transcriptional activity. Further analysis revealed that 8-bromo-cAMP addition decreases the association of NCoR and SMRT with PR. Thus, we propose that 8-bromo-cAMP-mediated potentiation of PR transcriptional activity is due, at least in part, to a disruption of the interaction between PR and the corepressors NCoR and SMRT. Cumulatively, these results suggest that NCoR and SMRT expression may play a pivotal role in PR pharmacology.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference46 articles.

1. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation;Allan G. F.;J. Biol. Chem.,1992

2. Induction of a novel conformation in the progesterone receptor by ZK299 involves a defined region of the carboxyl-terminal tail;Allan G. F.;Mol. Endocrinol.,1996

3. A transferable silencing domain is present in the thyroid hormone receptor, in the v-erbA oncogene product and in the retinoic acid receptor;Baniahmad A.;EMBO J.,1992

4. Molecular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site;Baniahmad A.;EMBO J.,1990

5. Effects of hormone and cellular modulators of protein phosphorylation on transcriptional activity, DNA binding, and phosphorylation of human progesterone receptors;Beck C. A.;Mol. Endocrinol.,1992

Cited by 246 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3