Differential gene expression in decidualized human endometrial stromal cells induced by different stimuli

Author:

Doi-Tanaka Yumiko,Tamura IsaoORCID,Shiroshita Amon,Fujimura Taishi,Shirafuta Yuichiro,Maekawa Ryo,Taketani Toshiaki,Sato Shun,Sugino Norihiro

Abstract

AbstractDecidualization can be induced by culturing human endometrial stromal cells (ESCs) with several decidualization stimuli, such as cAMP, medroxyprogesterone acetate (MPA) or Estradiol (E2). However, it has been unclear how decidualized cells induced by different stimuli are different. We compared transcriptomes and cellular functions of decidualized ESCs induced by different stimuli (MPA, E2 + MPA, cAMP, and cAMP + MPA). We also investigated which decidualization stimulus induces a closer in vivo decidualization. Differentially expressed genes (DEGs) and altered cellular functions by each decidualization stimuli were identified by RNA-sequence and gene-ontology analysis. DEGs was about two times higher for stimuli that use cAMP (cAMP and cAMP + MPA) than for stimuli that did not use cAMP (MPA and E2 + MPA). cAMP-using stimuli altered the cellular functions including angiogenesis, inflammation, immune system, and embryo implantation whereas MPA-using stimuli (MPA, E2 + MPA, and cAMP + MPA) altered the cellular functions associated with insulin signaling. A public single-cell RNA-sequence data of the human endometrium was utilized to analyze in vivo decidualization. The altered cellular functions by in vivo decidualization were close to those observed by cAMP + MPA-induced decidualization. In conclusion, decidualized cells induced by different stimuli have different transcriptome and cellular functions. cAMP + MPA may induce a decidualization most closely to in vivo decidualization.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3