Affiliation:
1. Servicio de Immunología, Hospital Universitario Marqués de Valdecilla,Instituto Nacional de la Salud, Santander, Spain.
Abstract
The mechanisms by which the intracellular pathogen Listeria monocytogenes interacts with the host cell surface remain largely unknown. In this study, we investigated the role of heparan sulfate proteoglycans (HSPG) in listerial infection. Pretreatment of bacteria with heparin or heparan sulfate (HS), but not with other glycosaminoglycans, inhibited attachment and subsequent uptake by IC-21 murine macrophages and CHO epithelial-like cells. Specific removal of HS from target cells with heparinase III significantly impaired listerial adhesion and invasion. Mutant CHO cells deficient in HS synthesis bound and internalized significantly fewer bacteria than wild-type cells did. Pretreatment of target cells with the HS-binding proteins fibronectin and platelet factor 4, or with heparinase III, impaired listerial infectivity only in those cells expressing HS. Moreover, a synthetic peptide corresponding to the HS-binding ligand in Plasmodium falciparum circumsporozoite protein (pepPf1) inhibited listerial attachment to IC-21 and CHO cells. A motif very similar to the HS-binding site of pepPf1 was found in the N-terminal region of ActA, the L. monocytogenes surface protein responsible for actin-based bacterial motility and cell-to-cell spread. In the same region of ActA, several clusters of positively charged amino acids which could function as HS-binding domains were identified. An ActA-deficient mutant was significantly impaired in attachment and entry due to altered HS recognition functions. This work shows that specific interaction with an HSPG receptor present on the surface of both professional and nonprofessional phagocytes is involved in L. monocytogenes cytoadhesion and invasion and strongly suggests that the bacterial surface protein ActA may be a ligand mediating HSPG receptor recognition.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
152 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献