Lipopolysaccharide changes in impermeability-type aminoglycoside resistance in Pseudomonas aeruginosa

Author:

Bryan L E,O'Hara K,Wong S

Abstract

Clinical isolates of Pseudomonas aeruginosa were examined for the basis of impermeability-type aminoglycoside resistance. Two apparently related burn isolate strains with high-level (strain 8803) and low-level (strain 13934) gentamicin resistance each had a plasmid. Transformation of the plasmid from either strain to P. aeruginosa PAO503 resulted in low-level gentamicin resistance. No mechanism for this resistance could be determined. Low-level gentamicin and streptomycin resistance from strain 8803 (but not 13934) was transduced with phage E79.tv2 to PAO503 without transfer of plasmid DNA. Transductants like strain 8803 showed absence or reduction of the lipopolysaccharide (LPS) "ladder" pattern of PAO503, had a change in chemical composition of LPS, and, like strain 8803, had a reduced capability to accumulate streptomycin. Comparison of the resistant clinical isolates 8803 and P10 with the apparently related but less-resistant strains 13934 and P10R, respectively, showed the latter strains had LPS ladder patterns and the former strains did not. Strain 8803 had normal outer membrane protein profiles, electron transport components, and transmembrane electrical potential relative to PAO503 and has been previously shown to have no detectable gentamicin-modifying enzymes and normal protein synthesis. We conclude that low-level impermeability-type aminoglycoside resistance in P. aeruginosa results from conversion of smooth LPS to superficial or deeper rough LPS phenotypes. High-level resistance apparently results from a plasmid-specified, but as yet unknown, mechanism combined with the preceding change in LPS structure.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3