Aminoglycoside-Resistant Mutation of Pseudomonas aeruginosa Defective in Cytochrome c 552 and Nitrate Reductase

Author:

Bryan L. E.1,Nicas Thalia2,Holloway B. W.3,Crowther Carol3

Affiliation:

1. Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, T2N 1N4 Canada

2. Department of Microbiology, University of British Columbia, Vancouver, V6K 1A9, Canada

3. Department of Genetics, Monash University, Melbourne, Australia

Abstract

A gentamicin-resistant mutant of Pseudomonas aeruginosa PAO503 was selected after ethyl methane sulfonate mutagenesis. The strain, P. aeruginosa PAO2401 had increased resistance to all aminoglycosides tested but exhibited no change for other antibiotics. The mutation designated aglA (aminoglycoside resistance) was 50% cotransducible with the 8-min ilvB,C marker on the P. aeruginosa chromosome. It showed a marked reduction in cytochrome c 552 and nitrate reductase (Nar) and a change in terminal oxidase activity. Cytochrome c 552 is a component of the P. aeruginosa Nar. No changes in succinate and reduced nicotinamide adenine dinucleotide dehydrogenases, ubiquinone content, Mg 2+ /Ca 2+ membrane adenosine triphosphatase, and energy coupling of electron transport to adenosine 5′-triphosphate synthesis were detected. Transport of gentamicin and dihydrostreptomycin was impaired in PAO2401, but transport of proline, arginine, glutamine, glucose or the polyamine spermidine was not reduced. Ribosomes of PAO2401, and PAO503 bound dihydrostreptomycin equally well, and cell extracts did not inactivate gentamicin or dihydrostreptomycin. Strain PAO2401 is resistant to gentamicin and dihydrostreptomycin because of impaired transport of these compounds. The transport studies indicate a selective coupling of dihydrostreptomycin and gentamicin transport with terminal electron transport. This conclusion was supported by results from another mutant (PAO417-T2) with increased Nar activity, enhanced dihydrostreptomycin and gentamicin transport and a reduction in resistance to these drugs. These results are discussed in relation to a refined model for aminoglycoside transport and briefly relative to plasmid-mediated aminoglycoside resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3