Plugging of a Model Rock System by Using Starved Bacteria

Author:

MacLeod F. A.1,Lappin-Scott H. M.1,Costerton J. W.1

Affiliation:

1. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Abstract

The effects of starvation on bacterial penetration through artificial rock cores were examined. Klebsiella pneumoniae was starved in a simple salts solution for a duration of up to 4 weeks. These cell suspensions were injected into sintered glass bead cores, and the resulting reductions in core permeabilities were recorded. Vegetative cell cultures of K. pneumoniae grown in a sodium citrate medium were injected into other, similar cores, and the reductions in core permeabilities were recorded. The starved cell suspensions did not completely block the core pores, whereas the vegetative cultures reduced core permeability to less than 1%. Scanning electron microscopy of core sections infiltrated with either vegetative or starved cells showed that the former produced shallow “skin” plugs and copious amounts of glycocalyx at the inlet face, whereas the latter produced very little glycocalyx and the cells were distributed evenly throughout the length of the core. The use of a DNA assay to produce a cell distribution profile showed that, compared with the vegetative cells, starved bacteria were able to penetrate deeper into the cores. This was due to the smaller size of the cells and the reduction in biofilm production. This ability of starved bacteria to penetrate further into cores than the normal-size vegetative cells can be usefully applied to selective plugging for enhanced oil recovery. To further test the suitability of starved cells for use in selective plugging, the activities of starved cells present within cores were monitored before and after nutrient stimulation. Our data indicate that with nutrient stimulation, the starved cells lose their metabolic dormancy and produce reductions in core permeability due to cell growth and polymer production.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3