New Target Genes Controlled by the Bradyrhizobium japonicum Two-Component Regulatory System RegSR

Author:

Lindemann Andrea1,Moser Annina1,Pessi Gabriella1,Hauser Felix1,Friberg Markus2,Hennecke Hauke1,Fischer Hans-Martin1

Affiliation:

1. Institute of Microbiology, ETH, Zürich, Switzerland

2. Institute of Computational Science, ETH, Zürich, Switzerland

Abstract

ABSTRACT RegSR-like proteins, members of the family of two-component regulatory systems, are present in a large number of proteobacteria in which they globally control gene expression mostly in a redox-responsive manner. The controlled target genes feature an enormous functional diversity. In Bradyrhizobium japonicum , the facultative root nodule symbiont of soybean, RegSR activate the transcription of the nitrogen fixation regulatory gene nifA , thus forming a RegSR-NifA cascade which is part of a complex regulatory network for gene regulation in response to changing oxygen concentrations. Whole-genome transcription profiling was performed here in order to assess the full regulatory scope of RegSR. The comparative analysis of wild-type and Δ regR cells grown under oxic and microoxic conditions revealed that expression of almost 250 genes is dependent on RegR, a result that underscores the important contribution of RegR to oxygen- or redox-regulated gene expression in B. japonicum . Furthermore, transcription profiling of Δ regR bacteroids compared with wild-type bacteroids revealed expression changes for about 1,200 genes in young and mature bacteroids. Incidentally, many of these were found to be induced in symbiosis when wild-type bacteroids were compared with free-living, culture-grown wild-type cells, and they appeared to encode diverse functions possibly related to symbiosis and nitrogen fixation. We demonstrated direct RegR-mediated control at promoter regions of several selected target genes by means of DNA binding experiments and in vitro transcription assays, which revealed six novel direct RegR target promoters.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3