Overlapping promoters for two different RNA polymerase holoenzymes control Bradyrhizobium japonicum nifA expression

Author:

Barrios H1,Fischer H M1,Hennecke H1,Morett E1

Affiliation:

1. Departamento de Ecología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos.

Abstract

The Bradyrhizobium japonicum NifA protein, the central regulator for nitrogen fixation gene expression, is encoded in the fixRnifA operon. This operon is activated during free-living anaerobic growth and in the symbiotic root nodule bacteroid state. In addition, it is expressed in aerobic conditions, albeit at a low level. Here, we report that this pattern of expression is due to the presence of two overlapping promoters: fixRp1, which is of the -24/-12 class recognized by the RNA polymerase sigma 54, and fixRp2, which shares homology with the -35 and -10 regions found in other putative B. japonicum housekeeping promoters. Primer extension analyses showed that fixRp1 directed the synthesis of a transcript, P1, that starts 12 nucleotides downstream of the -12 region. In addition to sigma 54, P1 was dependent on NifA and low oxygen tension. Transcripts originating from fixRp2 started at two sites: one coincided with P1, while the most abundant, P2 initiated just two nucleotides further downstream of P1. Expression from fixRp2 was dependent on the upstream -68 promoter region, a region known to bind a putative activator protein, but it was independent of sigma 54 and NifA. This promoter was expressed in aerobic and anaerobic conditions but was not expressed in 30-day-old bacteroids. Mutations in the conserved 12 region for the sigma 54 promoter did not show any transcript, because these mutations also disrupted the overlapping -10 region of the fixRp2 promoter. Conversely, mutations at the -24 region only affected the sigma 54-dependent P1 transcript, having no effect on the expression of P2. In the absence of omega(54), anaerobic expression from the fixRp(2) promoter was enhanced threefold, suggesting that in the wild-type strain, the two RNA polymerase holoenzymes must compete for binding to the same promoter region.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3