Quantitation of Candida albicans Ergosterol Content Improves the Correlation between In Vitro Antifungal Susceptibility Test Results and In Vivo Outcome after Fluconazole Treatment in a Murine Model of Invasive Candidiasis

Author:

Arthington-Skaggs Beth A.1,Warnock David W.1,Morrison Christine J.1

Affiliation:

1. Mycotic Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333

Abstract

ABSTRACT MIC end point determination for the most commonly prescribed azole antifungal drug, fluconazole, can be complicated by “trailing” growth of the organism during susceptibility testing by the National Committee for Clinical Laboratory Standards approved M27-A broth macrodilution method and its modified broth microdilution format. To address this problem, we previously developed the sterol quantitation method (SQM) for in vitro determination of fluconazole susceptibility, which measures cellular ergosterol content rather than growth inhibition after exposure to fluconazole. To determine if SQM MICs of fluconazole correlated better with in vivo outcome than M27-A MICs, we used a murine model of invasive candidiasis and analyzed the capacity of fluconazole to treat infections caused by C. albicans isolates which were trailers (M27-A MICs at 24 and 48 h, ≤1.0 and ≥64 μg/ml, respectively; SQM MIC, ≤1.0 μg/ml), as well as those which were fluconazole sensitive (M27-A and SQM MIC, ≤1.0 μg/ml) and fluconazole resistant (M27-A MIC, ≥64 μg/ml; SQM MIC, 54 μg/ml). Compared with the untreated controls, fluconazole therapy increased the survival of mice infected with a sensitive isolate and both trailing isolates but did not increase the survival of mice infected with a resistant isolate. These results indicate that the SQM is more predictive of in vivo outcome than the M27-A method for isolates that give unclear MIC end points due to trailing growth in fluconazole.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3