Duplication of pilus gene complexes of Haemophilus influenzae biogroup aegyptius

Author:

Read T D1,Dowdell M1,Satola S W1,Farley M M1

Affiliation:

1. Veterans Affairs Medical Center, Department of Medicine, Emory University School of Medicine, Decatur, Georgia 30033, USA.

Abstract

Brazilian purpuric fever (BPF) is a recently described pediatric septicemia caused by a strain of Haemophilus influenzae biogroup aegyptius. The pilus specified by this bacterium may be important in BPF pathogenesis, enhancing attachment to host tissue. Here, we report the cloning of two haf (for H. influenzae biogroup aegyptius fimbriae) gene clusters from a cosmid library of strain F3031. We sequenced a 6.8-kb segment of the haf1 cluster and identified five genes (hafA to hafE). The predicted protein products, HafA to HafD, are 72, 95, 98, and 90% similar, respectively, to HifA to HifD of the closely related H. influenzae type b pilus. Strikingly, the putative pilus adhesion, HifE, shares only 44% identity with HafE, suggesting that the proteins may differ in receptor specificity. Insertion of a mini-gammadelta transposon in the hafE gene eliminated hemadsorption. The nucleotide sequences of the haf1 and haf2 clusters are more than 99% identical. Using the recently published sequence of the H. influenzae Rd genome, we determined that the haf1 complex lies at a unique position in the chromosome between the pmbA gene and a hypothetical open reading frame, HI1153. The location of the haf2 cluster, inserted between the purE and pepN genes, is analogous to the hif genes on H. influenzae type b. BPF fimbrial phase switching appears to involve slip-strand mispairing of repeated dinucleotides in the pilus promoter. The BPF-associated H. influenzae biogroup aegyptius pilus system generally resembles other H. influenzae, but the possession of a second fimbrial gene cluster, which appears to have arisen by a recent duplication event, and the novel sequence of the HafE adhesin may be significant in the unusual pathogenesis of BPF.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3