FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin

Author:

Lo W S1,Dranginis A M1

Affiliation:

1. Department of Biological Sciences, St. John's University, Jamaica, New York 11439, USA.

Abstract

We report the characterization of a gene encoding a novel flocculin related to the STA genes of yeast, which encode secreted glucoamylase. The STA genes comprise sequences that are homologous to the sporulation-specific glucoamylase SGA and to two other sequences, S2 and S1. We find that S2 and S1 are part of a single gene which we have named FLO11. The sequence of FLO11 reveals a 4,104-bp open reading frame on chromosome IX whose predicted product is similar in overall structure to the class of yeast serine/threonine-rich GPI-anchored cell wall proteins. An amino-terminal domain containing a signal sequence and a carboxy-terminal domain with homology to GPI (glycosyl-phosphatidyl-inositol) anchor-containing proteins are separated by a central domain containing a highly repeated threonine- and serine-rich sequence. Yeast cells that express FLO11 aggregate in the calcium-dependent process of flocculation. Flocculation is abolished when FLO11 is disrupted. The product of STA1 also is shown to have flocculating activity. When a green fluorescent protein fusion of FLO11 was expressed from the FLO11 promoter on a single-copy plasmid, fluorescence was observed in vivo at the periphery of cells. We propose that FLO11 encodes a flocculin because of its demonstrated role in flocculation, its structural similarity to other members of the FLO gene family, and the cell surface location of its product. FLO11 gene sequences are present in all yeast strains tested, including all standard laboratory strains, unlike the STA genes which are present only in the variant strain Saccharomyces cerevisiae var. diastaticus. FLO11 differs from all other yeast flocculins in that it is located near a centromere rather than a telomere, and its expression is regulated by mating type. Repression of FLO11-dependent flocculation in diploids is conferred by the mating-type repressor al/alpha2.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3