Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism

Author:

Crandall Johnathan G.,Fisher Kaitlin J.,Sato Trey K.,Hittinger Chris ToddORCID

Abstract

Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment–cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.

Funder

National Science Foundation

National Institute of Food and Agriculture

Department of Energy

Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation

National Institutes of Health

Morgridge Institute for Research

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference168 articles.

1. The Dynamic Nature of Eukaryotic Genomes;LW Parfrey;Mol Biol Evol,2008

2. Polyploidy in fungi: evolution after whole-genome duplication;W Albertin;Proc R Soc B Biol Sci,2012

3. Polyploidy in Animals.;TR Gregory;The Evolution of the Genome. Elsevier,2005

4. The wondrous cycles of polyploidy in plants;JF Wendel;Am J Bot,2015

5. POLYPLOID INCIDENCE AND EVOLUTION;SP Otto;Annu Rev Genet,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3