Temporal and Stochastic Control of Staphylococcus aureus Biofilm Development

Author:

Moormeier Derek E.1,Bose Jeffrey L.1,Horswill Alexander R.2,Bayles Kenneth W.1

Affiliation:

1. Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA

2. Department of Microbiology, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA

Abstract

ABSTRACT Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated “multiplication” and “exodus”) that were associated with changes in matrix composition and a distinct reorganization of the cells as the biofilm matured. The initial attachment and multiplication stages were shown to be protease sensitive but independent of most cell surface-associated proteins. Interestingly, after 6 h of growth, an exodus of the biofilm population that followed the transition of the biofilm to DNase I sensitivity was demonstrated. Furthermore, disruption of the gene encoding staphylococcal nuclease ( nuc ) abrogated this exodus event, causing hyperproliferation of the biofilm and disrupting normal tower development. Immediately prior to the exodus event, S. aureus cells carrying a nuc :: gfp promoter fusion demonstrated Sae-dependent expression but only in an apparently random subpopulation of cells. In contrast to the existing model for tower development in S. aureus , the results of this study suggest the presence of a Sae-controlled nuclease-mediated exodus of biofilm cells that is required for the development of tower structures. Furthermore, these studies indicate that the differential expression of nuc during biofilm development is subject to stochastic regulatory mechanisms that are independent of the formation of metabolic microniches. IMPORTANCE In this study, we provide a novel view of four early stages of biofilm formation by the human pathogen Staphylococcus aureus . We identified an initial nucleoprotein matrix during biofilm development that is DNase I insensitive until a critical point when a nuclease-mediated exodus of the population is induced prior to tower formation. Unlike the previously described dispersal of cells that occurs after tower development, we found that the mechanism controlling this exodus event is dependent on the Sae regulatory system and independent of Agr. In addition, we revealed that the gene encoding the secreted staphylococcal nuclease was expressed in only a subpopulation of cells, consistent with a model in which biofilms exhibit multicellular characteristics, including the presence of specialized cells and a division of labor that imparts functional consequences to the remainder of the population.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3