Triacylglycerol Utilization Is Required for Regrowth of In Vitro Hypoxic Nonreplicating Mycobacterium bovis Bacillus Calmette-Guerin

Author:

Low Kai Leng1,Rao P. S. Srinivasa2,Shui Guanghou3,Bendt Anne K.3,Pethe Kevin2,Dick Thomas2,Wenk Markus R.134

Affiliation:

1. NUS Graduate School for Integrative Sciences and Engineering (NGS)

2. Tuberculosis Unit, Novartis Institute for Tropical Diseases (NITD) Pte. Ltd., Singapore 138670, Republic of Singapore

3. Department of Biochemistry, Yong Loo Lin School of Medicine

4. Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117456, Republic of Singapore

Abstract

ABSTRACT Mycobacteria store triacylglycerols (TGs) under various stress conditions, such as hypoxia, exposure to nitric oxide, and acidic environments. These stress conditions are known to induce nonreplicating persistence in mycobacteria. The importance of TG accumulation and utilization during regrowth is not clearly understood. Here we specifically determined the levels of accumulated TG and TG lipase activity in Mycobacterium bovis bacillus Calmette-Guerin (BCG) in various different physiological states (logarithmic growth, aerated stationary phase, hypoxia-induced dormancy, and regrowth from dormancy). We found extensive accumulation and degradation of TGs in the bacilli during entry into and exit from hypoxia-induced dormancy, respectively. These processes are accompanied by dynamic appearance and disappearance of intracellular TG lipid particles. The reduction in TG levels coincides with an increase in cellular TG lipase activity in the regrowing bacilli. Tetrahydrolipstatin, an inhibitor of TG lipases, reduces total lipase activity, prevents breakdown of TGs, and blocks the growth of mycobacteria upon resuscitation with air. Our results demonstrate that utilization of TGs is essential for the regrowth of mycobacteria during their exit from the hypoxic nonreplicating state.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3