The Critical Role of embC in Mycobacterium tuberculosis

Author:

Goude Renan1,Amin Anita G.2,Chatterjee Delphi2,Parish Tanya1

Affiliation:

1. Centre for Infectious Disease, Barts and The London, Queen Mary's School of Medicine and Dentistry, London E1 2AT, United Kingdom

2. Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523

Abstract

ABSTRACT Arabinan polymers are major components of the cell wall in Mycobacterium tuberculosis and are involved in maintaining its structure, as well as playing a role in host-pathogen interactions. In particular, lipoarabinomannan (LAM) has multiple immunomodulatory effects. In the nonpathogenic species Mycobacterium smegmatis , EmbC has been identified as a key arabinosyltransferase involved in the incorporation of arabinose into LAM, and an embC mutant is viable but lacks LAM. In contrast, we demonstrate here that in M. tuberculosis , embC is an essential gene under normal growth conditions, suggesting a more crucial role for LAM in the pathogenic mycobacteria. M. tuberculosis EmbC has an activity similar to that of M. smegmatis EmbC, since we were able to complement an embC mutant of M. smegmatis with embC Mtb , confirming that it encodes a functional arabinosyltransferase. In addition, we observed that the size of LAM produced in M. smegmatis was dependent on the level of expression of embC Mtb . Northern analysis revealed that embC is expressed as part of a polycistronic message encompassing embC and three upstream genes. The promoter region for this transcript was identified and found to be up-regulated in stationary phase but down-regulated during hypoxia-induced nonreplicating persistence. In conclusion, we have identified one of the key genes involved in LAM biosynthesis in M. tuberculosis and confirmed its essential role in this species.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3