Identification of proteases from periodontopathogenic bacteria as activators of latent human neutrophil and fibroblast-type interstitial collagenases

Author:

Sorsa T1,Ingman T1,Suomalainen K1,Haapasalo M1,Konttinen Y T1,Lindy O1,Saari H1,Uitto V J1

Affiliation:

1. Department of Periodontology, University of Helsinki, Finland.

Abstract

Activation of latent human fibroblast-type and neutrophil interstitial procollagenases as well as degradation of native type I collagen by supra- and subgingival dental plaque extracts, an 80-kDa trypsinlike protease from Porphyromas gingivalis (ATCC 33277), a 95-kDa chymotrypsinlike protease from Treponema denticola (ATCC 29522), and selected bacterial species commonly isolated in periodontitis was studied. The bacteria included were Prevotella intermedia (ATCC 25261), Prevotella buccae (ES 57), Prevotella oris (ATCC 33573), Porphyromonas endodontalis (ES 54b), Actinobacillus actinomycetemcomitans (ATCC 295222), Fusobacterium nucleatum (ATCC 10953), Mitsuokella dentalis (DSM 3688), and Streptococcus mitis (ATCC 15909). None of the bacteria activated latent procollagenases; however, both sub- and supragingival dental plaque extracts (neutral salt extraction) and proteases isolated from cell extracts from potentially periodontopathogenic bacteria P. gingivalis and T. denticola were found to activate latent human fibroblast-type and neutrophil interstitial procollagenases. The fibroblast-type interstitial collagenase was more efficiently activated by bacterial proteases than the neutrophil counterpart, which instead preferred nonproteolytic activation by the oxidative agent hypochlorous acid. The proteases were not able to convert collagenase tissue inhibitor of metalloproteinase (TIMP-1) complexes into active form or to change the ability of TIMP-1 to inhibit interstitial collagenase. None of the studied bacteria, proteases from P. gingivalis and T. denticola, or extracts of supra- and subgingival dental plaque showed any significant collagenolytic activity. However, the proteases degraded native and denatured collagen fragments after cleavage by interstitial collagenase and gelatinase. Our results indicate that proteases from periodontopathogenic bacteria can act as direct proteolytic activators of human procollagenases and degrade collagen fragments. Thus, in concert with host enzymes the bacterial proteases may participate in periodontal tissue destruction.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference38 articles.

1. From tadpole collagenase to a family of matrix metalloproteinases;Birkedal-Hansen H.;J. Oral Pathol.,1988

2. Characterization of collagenolytic activity from strains of Bacteroides gingivalis;Birkedal-Hansen H.;J. Periodontal Res.,1988

3. Hypochlorous acid activation of neutrophil collagenase requires cathepsin G;Capodici C. C.;Coll. Rel. Res.,1988

4. Human fibroblast collagenase: complete primary structure;Goldberg G. I.;J. Biol. Chem.,1986

5. Characterization of SDS-stable Bacteroides gingivalis proteases by polyacrylamide gel electrophoresis;Grenier D.;Infect. Immun.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3