Porphyromonas endodontalis HmuY differentially participates in heme acquisition compared to the Porphyromonas gingivalis and Tannerella forsythia hemophore-like proteins

Author:

Śmiga Michał,Olczak Teresa

Abstract

IntroductionPorphyromonas gingivalis and Porphyromonas endodontalis belong to the Bacteroidota phylum. Both species inhabit the oral cavity and can be associated with periodontal diseases. To survive, they must uptake heme from the host as an iron and protoporphyrin IX source. Among the best-characterized heme acquisition systems identified in members of the Bacteroidota phylum is the P. gingivalis Hmu system, with a leading role played by the hemophore-like HmuY (HmuYPg) protein.MethodsTheoretical analysis of selected HmuY proteins and spectrophotometric methods were employed to determine the heme-binding mode of the P. endodontalis HmuY homolog (HmuYPe) and its ability to sequester heme. Growth phenotype and gene expression analysis of P. endodontalis were employed to reveal the importance of the HmuYPe and Hmu system for this bacterium.ResultsUnlike in P. gingivalis, where HmuYPg uses two histidines for heme-iron coordination, other known HmuY homologs use two methionines in this process. P. endodontalis HmuYPe is the first characterized representative of the HmuY family that binds heme using a histidine-methionine pair. It allows HmuYPe to sequester heme directly from serum albumin and Tannerella forsythia HmuYTf, the HmuY homolog which uses two methionines for heme-iron coordination. In contrast to HmuYPg, which sequesters heme directly from methemoglobin, HmuYPe may bind heme only after the proteolytic digestion of hemoglobin.ConclusionsWe hypothesize that differences in components of the Hmu system and structure-based properties of HmuY proteins may evolved allowing different adaptations of Porphyromonas species to the changing host environment. This may add to the superior virulence potential of P. gingivalis over other members of the Bacteroidota phylum.

Funder

Narodowe Centrum Nauki

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3