Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans

Author:

Schilling K M1,Bowen W H1

Affiliation:

1. Department of Dental Research, University of Rochester, School of Medicine and Dentistry, New York 14642.

Abstract

Many researchers have suggested that the role of glucan-mediated interactions in the adherence of Streptococcus mutans is restricted to accumulation of this cariogenic bacterium following its sucrose (i.e., glucan)-independent binding to saliva-coated tooth surfaces. However, the presence of enzymatically active glucosyltransferase in salivary pellicle suggests that glucans could also promote the initial adherence of S. mutans to the teeth. In the present study, the commonly used hydroxyapatite adherence assay was modified to include the incorporation of glucosyltransferase and the synthesis of glucans in situ on saliva-coated hydroxyapatite beads. Several laboratory strains and clinical isolates of S. mutans were examined for their ability to adhere to experimental pellicles, either with or without the prior formation of glucans in situ. Results showed that most strains of S. mutans bound stereospecifically to glucans synthesized in pellicle. Inhibition studies with various polysaccharides and fungal dextranase indicated that alpha 1,6-linked glucose residues were of primary importance in the glucan binding observed. Scanning electron microscopic analysis showed direct binding of S. mutans to hydroxyapatite surface-associated polysaccharide and revealed no evidence of trapping or cell-to-cell binding. S. mutans strains also attached to host-derived structures in experimental pellicles, and the data suggest that the bacterial adhesins which recognize salivary binding sites were distinct from glucan-binding adhesins. Furthermore, glucans formed in experimental pellicles appeared to mask the host-derived components. These results support the concept that glucans synthesized in salivary pellicle can promote the selective adherence of the cariogenic streptococci which colonize human teeth.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3