pH-Responsive Biomaterials for the Treatment of Dental Caries—A Focussed and Critical Review

Author:

He Yanping1,Vasilev Krasimir2ORCID,Zilm Peter1ORCID

Affiliation:

1. Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia

2. College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia

Abstract

Dental caries is a common and costly multifactorial biofilm disease caused by cariogenic bacteria that ferment carbohydrates to lactic acid, demineralizing the inorganic component of teeth. Therefore, low pH (pH 4.5) is a characteristic signal of the localised carious environment, compared to a healthy oral pH range (6.8 to 7.4). The development of pH-responsive delivery systems that release antibacterial agents in response to low pH has gained attention as a targeted therapy for dental caries. Release is triggered by high levels of acidogenic species and their reduction may select for the establishment of health-associated biofilm communities. Moreover, drug efficacy can be amplified by the modification of the delivery system to target adhesion to the plaque biofilm to extend the retention time of antimicrobial agents in the oral cavity. In this review, recent developments of different pH-responsive nanocarriers and their biofilm targeting mechanisms are discussed. This review critically discusses the current state of the art and innovations in the development and use of smart delivery materials for dental caries treatment. The authors’ views for the future of the field are also presented.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference185 articles.

1. Socioeconomic inequality and caries: A systematic review and meta-analysis;Schwendicke;J. Dent. Res.,2015

2. The global burden of oral diseases and risks to oral health;Petersen;Bull. World Health Organ.,2005

3. The global increase in dental caries. A pending public health crisis;Bagramian;Am. J. Dent.,2009

4. Global epidemiology of dental caries and severe periodontitis–a comprehensive review;Frencken;J. Clin. Periodontol.,2017

5. The human oral microbiome;Dewhirst;J. Bacteriol.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3