Comparison of daptomycin, vancomycin, and ampicillin-gentamicin for treatment of experimental endocarditis caused by penicillin-resistant enterococci

Author:

Ramos M C1,Grayson M L1,Eliopoulos G M1,Bayer A S1

Affiliation:

1. Division of Infectious Diseases, Harbor-University of California, Los Angeles, Medical Center, Torrance 90509.

Abstract

Infections with enterococci that are resistant to multiple antibiotics are an emerging clinical problem. We evaluated the antibiotic treatment of experimental enterococcal endocarditis caused by two strains with different mechanisms of penicillin resistance. Enterococcus faecalis HH-22 is resistant to aminoglycosides and penicillin on the basis of plasmid-mediated modifying enzymes; Enterococcus raffinosus SF-195 is susceptible to aminoglycosides but is resistant to penicillin on the basis of low-affinity penicillin-binding proteins. Animals infected with strain HH-22 received 5 days of treatment with the following: no treatment; daptomycin (20 mg/kg of body weight twice daily [b.i.d.], intramuscularly [i.m.]), vancomycin (20 mg/kg b.i.d., intravenously), or ampicillin (100 mg/kg three times daily, i.m.) plus gentamicin (2.5 mg/kg b.i.d. i.m.). Although vancomycin was superior to ampicillin-gentamicin (P less than 0.01), daptomycin was significantly better than all other treatment regimens (P less than 0.01) in reducing intravegetation enterococcal densities, although no vegetations were rendered culture negative by this agent. Animals infected with strain SF-195 received 5 days of no therapy, ampicillin, ampicillin-gentamicin, vancomycin, or daptomycin (all at the dosage regimens described above). Daptomycin, vancomycin, and ampicillin-gentamicin each lowered intravegetation enterococcal densities significantly better than did ampicillin monotherapy or no treatment (P less than 0.01); moreover, these three treatment regimens rendered significantly more vegetations culture negative than did ampicillin monotherapy or no treatment (P less than 0.05). Serum daptomycin levels remained above the MICs and MBCs for both enterococcal strains throughout the 12-h dosing interval used in the study. Daptomycin and vancomycin were both active in vivo in these models of experimental enterococcal endocarditis caused by penicillin-resistant strains, irrespective of the mechanism of resistance. This activity correlated with the unique cell wall sites of action of these agents (binding to lipoteichoic acid and pentapeptide precursor, respectively) compared with the sites of action of beta-lactams (penicillin-binding proteins). Beta-Lactamase production by strain HH-22 precluded in vivo efficacy with ampicillin-gentamicin combinations. In contrast, this combination was active in vivo against strain SF-195, which exhibited intermediate-level penicillin resistance (MIC, 32 micrograms/ml), likely reflecting the ability of high-dose ampicillin to achieve enough binding to low-affinity penicillin-binding proteins to cause augmented aminoglycoside uptake.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3