The Lymphocytic Choriomeningitis Virus RING Protein Z Associates with Eukaryotic Initiation Factor 4E and Selectively Represses Translation in a RING-Dependent Manner

Author:

Campbell Dwyer Elizabeth J.1,Lai HuiKang2,MacDonald Rhea C.12,Salvato Maria S.3,Borden Katherine L. B.12

Affiliation:

1. Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H71;

2. Department of Physiology and Biophysics, Mt. Sinai School of Medicine, New York, New York 100292; and

3. Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706-15323

Abstract

ABSTRACT Only a few host cell proteins that associate with arenaviruses have been identified. To date, the arenavirus Z protein associates with the promyelocytic leukemia protein PML and the ribosomal P proteins. The majority of PML is present in nuclear bodies which are translocated to the cytoplasm by infection with the arenavirus, lymphocytic choriomeningitis virus (LCMV). The Z protein is a small zinc-binding RING protein with an unknown function which is required for the viral life cycle. Here, we demonstrate an association between Z and the host cell translation factor, eukaryotic initiation factor 4E (eIF-4E) in infected and transfected cells. Z's association with both ribosomal proteins and this translation factor led us to investigate whether Z could modulate host cell translation. In cell culture, Z selectively represses protein production in an eIF-4E-dependent manner. Specifically, we see reduction in cyclin D1 protein production with no effect on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cells transfected with Z. Previous reports indicate that cyclin D1 is sensitive to eIF-4E levels, whereas GAPDH is not. Consistent with this, we observe preferential downregulation of cyclin D1 during infection and no effect on GAPDH. Further, no changes in RNA levels were observed for cyclin D1 or GAPDH transcripts. The interaction between eIF-4E and Z may provide a mechanism for slower growth observed in infected cells and a viral strategy for establishing chronic infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3