Structural and molecular biology of Sabiá virus

Author:

Bezerra Eduardo HS1,Melo-Hanchuk Talita D1,Marques Rafael Elias1ORCID

Affiliation:

1. Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo 13083-100, Brazil

Abstract

Brazilian mammarenavirus, or Sabiá virus (SABV), is a New World (NW) arenavirus associated with fulminant hemorrhagic disease in humans and the sole biosafety level 4 microorganism ever isolated in Brazil. Since the isolation of SABV in the 1990s, studies on viral biology have been scarce, with no available countermeasures against SABV infection or disease. Here we provide a comprehensive review of SABV biology, including key aspects of SABV replication, and comparisons with related Old World and NW arenaviruses. SABV is most likely a rodent-borne virus, transmitted to humans, through exposure to urine and feces in peri-urban areas. Using protein structure prediction methods and alignments, we analyzed shared and unique features of SABV proteins (GPC, NP, Z, and L) that could be explored in search of therapeutic strategies, including repurposing intended application against arenaviruses. Highly conserved catalytic activities present in L protein could be targeted for broad-acting antiviral activity among arenaviruses, while protein-protein interactions, such as those between L and the matrix protein Z, have evolved in NW arenaviruses and should be specific to SABV. The nucleoprotein (NP) also shares targetable interaction interfaces with L and Z and exhibits exonuclease activity in the C-terminal domain, which may be involved in multiple aspects of SABV replication. Envelope glycoproteins GP1 and GP2 have been explored in the development of promising cross-reactive neutralizing antibodies and vaccines, some of which could be repurposed for SABV. GP1 remains a challenging target in SABV as evolutive pressures render it the most variable viral protein in terms of both sequence and structure, while antiviral strategies targeting the Z protein remain to be validated. In conclusion, the prediction and analysis of protein structures should revolutionize research on viruses such as SABV by facilitating the rational design of countermeasures while reducing dependence on sophisticated laboratory infrastructure for experimental validation.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3