Affiliation:
1. Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
Abstract
The metabolic pathways utilized by an obligately anaerobic marine spirochete (strain MA-2) to ferment branched-chain amino acids were studied. The spirochete catabolized
l
-leucine to isovaleric acid,
l
-isoleucine to 2-methylbutyric acid, and
l
-valine to isobutyric acid, with accompanying CO
2
production in each fermentation. Cell extracts of spirochete MA-2 converted
l
-leucine,
l
-isoleucine, and
l
-valine to 2-ketoisocaproic, 2-keto-3-methylvaleric, and 2-ketoisovaleric acids, respectively, through mediation of 2-ketoglutarate-dependent aminotransferase activities. The branched-chain keto acids were decarboxylated and oxidized to form isovaleryl coenzyme A, 2-methylbutyryl coenzyme A, and isobutyryl coenzyme A, respectively, in the presence of sulfhydryl coenzyme A and benzyl viologen. The acyl coenzyme A's were converted to acyl phosphates by phosphate branched-chain acyltransferase enzymatic activities. Branched-chain fatty acid kinase activities catalyzed formation of isovaleric, 2-methylbutyric, and isobutyric acids from isovaleryl phosphate, 2-methylbutyryl phosphate, and isobutyryl phosphate, respectively. Adenosine 5′-triphosphate was formed during conversion of branched-chain acyl phosphates to branched-chain fatty acids. The results indicate that conversion of
l
-leucine,
l
-isoleucine, and
l
-valine to branched-chain fatty acids by spirochete MA-2 results in adenosine 5′-triphosphate generation. The metabolic pathways utilized for this conversion involve amino acid amino-transferase, 2-keto acid oxidoreductase, phosphate acyltransferase, and fatty acid kinase activities.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献