The biosynthesis of valine from isobutyrate by Peptostreptococcus elsdenii and Bacteroides ruminicola

Author:

Allison Milton J.1,Peel J. L.1

Affiliation:

1. National Animal Disease Laboratory, Veterinary Sciences Research Division, U.S. Department of Agriculture, Ames, Iowa 50010, U.S.A., and Agricultural Research Council Food Research Institute, Colney Lane, Norwich NOR 70F, U.K.

Abstract

1. Growing cultures of Peptostreptococcus elsdenii and Bacteroides ruminicola incorporate 14C from [1-14C]isobutyrate into the valine of cell protein. With P. elsdenii some of the 14C is also incorporated into leucine. 2. Crude cell-free extracts of both organisms in the presence of glutamine, carbon dioxide and suitable sources of energy and electrons incorporate 14C from [1-14C]isobutyrate into valine but not into leucine. 3. With extracts of P. elsdenii treated with DEAE-cellulose the reaction is dependent on ATP, CoA, thiamin pyrophosphate, molecular hydrogen and a low-potential electron carrier (ferredoxin, flavodoxin or benzyl viologen). 4. The same extracts incorporate 14C from NaH14CO3 into valine in the presence of isobutyrate plus ATP, CoA, glutamine and ferredoxin; isobutyryl-CoA or isobutyryl phosphate plus CoA will replace the isobutyrate plus CoA and ATP. With acetyl phosphate in place of isobutyryl phosphate, 14C is incorporated into alanine. With isovalerate or 2-methylbutyrate in place of isobutyrate, 14C is incorporated into leucine and isoleucine respectively. 5. When carrier 2-oxoisovalerate is added to the carboxylating system 14C from [1-14C]isobutyrate passes into the oxo acid fraction. 6. It is concluded that these two organisms form valine from isobutyrate by the sequence isobutyrate→isobutyryl-CoA→2-oxoisovalerate→valine and that the reductive carboxylation of isobutyrate is catalysed by a system similar to the pyruvate synthetase of clostridia and photosynthetic bacteria.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3