Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth

Author:

Nakano M M1,Dailly Y P1,Zuber P1,Clark D P1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA. mnakan@nomvs.lsumc.edu

Abstract

Bacillus subtilis can grow anaerobically by respiration with nitrate as a terminal electron acceptor. In the absence of external electron acceptors, it grows by fermentation. Identification of fermentation products by using in vivo nuclear magnetic resonance scans of whole cultures indicated that B. subtilis grows by mixed acid-butanediol fermentation but that no formate is produced. An ace mutant that lacks pyruvate dehydrogenase (PDH) activity was unable to grow anaerobically and produced hardly any fermentation product. These results suggest that PDH is involved in most or all acetyl coenzyme A production in B. subtilis under anaerobic conditions, unlike Escherichia coli, which uses pyruvate formate lyase. Nitrate respiration was previously shown to require the ResDE two-component signal transduction system and an anaerobic gene regulator, FNR. Also required are respiratory nitrate reductase, encoded by the narGHJI operon, and moaA, involved in biosynthesis of a molybdopterin cofactor of nitrate reductase. The resD and resDE mutations were shown to moderately affect fermentation, but nitrate reductase activity and fnr are dispensable for fermentative growth. A search for genes involved in fermentation indicated that ftsH is required, and is also needed to a lesser extent for nitrate respiration. These results show that nitrate respiration and fermentation of B. subtilis are governed by divergent regulatory pathways.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3