Expression of thiamin biosynthetic genes (thiCOGE) and production of symbiotic terminal oxidase cbb3 in Rhizobium etli

Author:

Miranda-Ríos J1,Morera C1,Taboada H1,Dávalos A1,Encarnación S1,Mora J1,Soberón M1

Affiliation:

1. Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, U.N.A.M., Cuernavaca, Morelos, México.

Abstract

In this paper we report the cloning and sequence analysis of four genes, located on plasmid pb, which are involved in the synthesis of thiamin in Rhizobium etli (thiC, thiO, thiG, and thiE). Two precursors, 4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate and 4-amino-5-hydroxymethylpyrimidine pyrophosphate, are coupled to form thiamin monophosphate, which is then phosphorylated to make thiamin pyrophosphate. The first open reading frame (ORF) product, of 610 residues, has significant homology (69% identity) with the product of thiC from Escherichia coli, which is involved in the synthesis of hydroxymethylpyrimidine. The second ORF product, of 327 residues, is the product of a novel gene denoted thiO. A protein motif involved in flavin adenine dinucleotide binding was found in the amino-terminal part of ThiO; also, residues involved in the catalytic site of D-amino acid oxidases are conserved in ThiO, suggesting that it catalyzes the oxidative deamination of some intermediate of thiamin biosynthesis. The third ORF product, of 323 residues, has significant homology (38% identity) with ThiG from E. coli, which is involved in the synthesis of the thiazole. The fourth ORF product, of 204 residues, has significant homology (47% identity) with the product of thiE from E. coli, which is involved in the condensation of hydroxymethylpyrimidine and thiazole. Strain CFN037 is an R. etli mutant induced by a single Tn5mob insertion in the promoter region of the thiCOGE gene cluster. The Tn5mob insertion in CFN037 occurred within a 39-bp region which is highly conserved in all of the thiC promoters analyzed and promotes constitutive expression of thiC. Primer extension analysis showed that thiC transcription in strain CFN037 originates within the Tn5 element. Analysis of c-type protein content and expression of the fixNOQP operon, which codes for the symbiotic terminal oxidase cbb3, revealed that CFN037 produces the cbb3 terminal oxidase. These data show a direct relationship between expression of thiC and production of the cbb3 terminal oxidase. This is consistent with the proposition that a purine-related metabolite, 5-aminoimidazole-4-carboxamide ribonucleotide, is a negative effector of the production of the symbiotic terminal oxidase cbb3 in R. etli.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3