Performance of the Genotype MTBDR Line Probe Assay for Detection of Resistance to Rifampin and Isoniazid in Strains of Mycobacterium tuberculosis with Low- and High-Level Resistance

Author:

Brossier Florence1,Veziris Nicolas1,Truffot-Pernot Chantal1,Jarlier Vincent1,Sougakoff Wladimir1

Affiliation:

1. National Reference Center for Mycobacteria, Department of Bacteriology-Hygiene, Faculté de Médecine Pierre & Marie Curie (Paris VI) site Pitié-Salpêtrière, Paris, France

Abstract

ABSTRACT We assessed the performance of the Genotype MTBDR line probe assay that offers the simultaneous identification of Mycobacterium tuberculosis and its resistance to rifampin (RIF) and isoniazid (INH) by detecting the most commonly found mutations in the rpoB and katG genes. One hundred thirteen M. tuberculosis isolates were tested. The nucleotide sequences of the katG and inhA genes and the mabA - inhA promoter region were also determined. The MTBDR assay detected 100% and 67% ( n = 64) of the strains resistant to RIF and INH, respectively. Among the latter, 62 strains carried a Ser315Thr mutation in katG , 59 of them displaying a high level of resistance to INH. Two strains with a low level of INH resistance had a Ser315Asn mutation. No mutation was found by the MTBDR assay for 31 INH-resistant strains (33%), of which 24 showed a low level of resistance. By DNA sequencing, we found among them various mutations in the KatG protein for 7 strains, a C→T mutation in position −15 of the mabA - inhA promoter in 17 strains, and a Ser94Ala mutation in InhA for 7 strains. In conclusion, the MTBDR assay, which fits easily in the workflow of a routine laboratory, enabled the detection of 100% of the RIF-resistant strains and 89% of the INH-resistant strains with a high level of resistance but only 17% of the strains characterized by a low level of INH resistance, indicating that the test can be used as a rapid method to detect in the same experiment the rifampin-resistant and the high-level isoniazid-resistant strains of M. tuberculosis.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3