Clustering minimal inhibitory concentration data through Bayesian mixture models: An application to detect Mycobacterium tuberculosis resistance mutations

Author:

Grazian Clara12ORCID

Affiliation:

1. School of Mathematics and Statistics, University of Sydney, NSW, Australia

2. ARC Training Centre in Data Analytics for Resources and Environments (DARE), Australia

Abstract

Antimicrobial resistance is becoming a major threat to public health throughout the world. Researchers are attempting to contrast it by developing both new antibiotics and patient-specific treatments. In the second case, whole-genome sequencing has had a huge impact in two ways: first, it is becoming cheaper and faster to perform whole-genome sequencing, and this makes it competitive with respect to standard phenotypic tests; second, it is possible to statistically associate the phenotypic patterns of resistance to specific mutations in the genome. Therefore, it is now possible to develop catalogues of genomic variants associated with resistance to specific antibiotics, in order to improve prediction of resistance and suggest treatments. It is essential to have robust methods for identifying mutations associated to resistance and continuously updating the available catalogues. This work proposes a general method to study minimal inhibitory concentration distributions and to identify clusters of strains showing different levels of resistance to antimicrobials. Once the clusters are identified and strains allocated to each of them, it is possible to perform regression method to identify with high statistical power the mutations associated with resistance. The method is applied to a new 96-well microtiter plate used for testing Mycobacterium tuberculosis.

Funder

Statistical Society of Australia

Australian Research Council

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Reference96 articles.

1. European Commission. A European one health action plan against antimicrobial resistance (AMR). Brussels, Belgium: European Commission, 2017.

2. World Health Organization. Global framework for Development and stewardship to combat antimicrobial resistance? World Health Organization, Geneva, Switzerland, 2017.

3. Sublethal Antibiotic Treatment Leads to Multidrug Resistance via Radical-Induced Mutagenesis

4. Mechanisms of antimicrobial resistance in bacteria

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3