Affiliation:
1. Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
Abstract
ABSTRACT
While the expression of genes that are normally involved in spermatogenesis is frequently detected in tumors, the extent to which these gene products are required for neoplastic behaviors is unclear. To begin to address their functional relevance to tumorigenesis, we identified a cohort of proteins which display synthetic lethality with paclitaxel in non-small-cell lung cancer and whose expression is biased toward testes and tumors. Remarkably, these testis proteins, FMR1NB, NXF2, MAGEA5, FSIP1, and STARD6, are required for accurate chromosome segregation in tumor cells. Their individual depletion enhances the generation of multipolar spindles, increases mitotic transit time, and induces micronucleation in response to an otherwise innocuous dose of paclitaxel. The underlying basis for abnormal mitosis is an alteration in microtubule function, as their depletion increases microtubule cytaster formation and disrupts microtubule stability. Given these observations, we hypothesize that reactivated testis proteins may represent unique tumor cell vulnerabilities which, if targeted, could enhance responsiveness to antimitotic therapy. Indeed, we demonstrate that combining paclitaxel with a small-molecule inhibitor of the gametogenic and tumor cell mitotic protein TACC3 leads to enhanced centrosomal abnormalities, activation of death programs, and loss of anchorage-independent growth.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献