Vertical Transmission of Hepatitis C Virus: Variable Transmission Bottleneck and Evidence of Midgestation In Utero Infection

Author:

Fauteux-Daniel Sébastien12,Larouche Ariane12,Calderon Virginie123,Boulais Jonathan4,Béland Chanel12,Ransy Doris G.12,Boucher Marc56,Lamarre Valérie57,Lapointe Normand57,Boucoiran Isabelle56,Le Campion Armelle12,Soudeyns Hugo127ORCID

Affiliation:

1. Unité d'immunopathologie virale, Centre de recherche du Centre hospitalier universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada

2. Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada

3. Department of Informatics and Operations Research, Université de Montréal, Montreal, Quebec, Canada

4. Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada

5. Centre maternel et infantile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada

6. Department of Obstetrics & Gynecology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada

7. Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada

Abstract

ABSTRACT Hepatitis C virus (HCV) can be transmitted from mother to child during pregnancy and childbirth. However, the timing and precise biological mechanisms that are involved in this process are incompletely understood, as are the determinants that influence transmission of particular HCV variants. Here we report results of a longitudinal assessment of HCV quasispecies diversity and composition in 5 cases of vertical HCV transmission, including 3 women coinfected with human immunodeficiency virus type 1 (HIV-1). The population structure of HCV variant spectra based on E2 envelope gene sequences (nucleotide positions 1491 to 1787), including hypervariable regions 1 and 2, was characterized using next-generation sequencing and median-joining network analysis. Compatible with a loose transmission bottleneck, larger numbers of shared HCV variants were observed in the presence of maternal coinfection. Coalescent Bayesian Markov chain Monte Carlo simulations revealed median times of transmission between 24.9 weeks and 36.1 weeks of gestation, with some confidence intervals ranging into the 1st trimester, considerably earlier than previously thought. Using recombinant autologous HCV pseudoparticles, differences were uncovered in HCV-specific antibody responses between coinfected mothers and mothers infected with HCV alone, in whom generalized absence of neutralization was observed. Finally, shifts in HCV quasispecies composition were seen in children around 1 year of age, compatible with the disappearance of passively transferred maternal immunoglobulins and/or the development of HCV-specific humoral immunity. Taken together, these results provide insights into the timing, dynamics, and biologic mechanisms involved in vertical HCV transmission and inform preventative strategies. IMPORTANCE Although it is well established that hepatitis C virus (HCV) can be transmitted from mother to child, the manner and the moment at which transmission operates have been the subject of conjecture. By carrying out a detailed examination of viral sequences, we showed that transmission could take place comparatively early in pregnancy. In addition, we showed that when the mother also carried human immunodeficiency virus type 1 (HIV-1), many more HCV variants were shared between her and her child, suggesting that the mechanism and/or the route of transmission of HCV differed in the presence of coinfection with HIV-1. These results could explain why cesarean section is ineffective in preventing vertical HCV transmission and guide the development of interventions to avert pediatric HCV infection.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Fonds de Recherche du Québec-Santé;

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3