Role of Nuclear Factor Y in Stress-Induced Activation of the Herpes Simplex Virus Type 1 ICP0 Promoter

Author:

Kushnir Anna S.1,Davido David J.2,Schaffer Priscilla A.1

Affiliation:

1. Department of Medicine, and Microbiology and Medical Genetics, Harvard Medical School at the Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215

2. Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045

Abstract

ABSTRACT Herpesviruses are characterized by the ability to establish lifelong latent infections and to reactivate periodically, leading to recurrent disease. The herpes simplex virus type 1 (HSV-1) genome is maintained in a quiescent state in sensory neurons during latency, which is characterized by the absence of detectable viral protein synthesis. Cellular factors induced by stress may act directly on promoters within the latent viral genome to induce the transcription of viral genes and trigger reactivation. In order to identify which viral promoters are induced by stress and elucidate the cellular mechanism responsible for the induction, we generated a panel of HSV-1 promoter-luciferase constructs and measured their response to heat shock. Of the promoters tested, those of ICP0 and ICP22 were the most strongly upregulated after heat shock. Microarray analysis of lytically infected cells supported the upregulation of ICP0 and ICP22 promoters by heat shock. Mutagenic analysis of the ICP0 promoter identified two regions necessary for efficient heat-induced promoter activity, both containing predicted nuclear factor Y (NF-Y) sites, at bases −708 and −75 upstream of the transcriptional start site. While gel shift analysis confirmed NF-Y binding to both sites, only the site at −708 was important for efficient heat-induced activity. Reverse transcription-PCR analysis of selected viral transcripts in the presence of dominant-negative NF-Y confirmed the requirement for NF-Y in the induction of the ICP0 but not the ICP22 promoter by heat shock in lytically infected cells. These findings suggest that the immediate-early ICP0 gene may be among the first genes to be induced during the early events in HSV-1 reactivation, that NF-Y is important for this induction, and that other factors induce the ICP22 promoter.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3