Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells

Author:

Caughey B1,Raymond G J1

Affiliation:

1. Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, Hamilton, Montana 59840.

Abstract

The accumulation of an abnormal, protease-resistant form of the protein PrP (PrP-res) in hosts with scrapie and related transmissible spongiform encephalopathies appears to be important in disease pathogenesis. To gain insight into the mechanism of PrP-res accumulation and the in vivo antiscrapie activity of certain polyanions, we have studied effects of sulfated glycans on PrP metabolism in scrapie-infected neuroblastoma cells. Pentosan polysulfate, like the amyloid-binding dye Congo red, potently inhibited the accumulation of PrP-res in these cells without apparent effects on the metabolism of the normal isoform. The inhibition was due primarily to prevention of new PrP-res accumulation rather than destabilization of preexisting PrP-res. PrP-res accumulation remained depressed in the cultures after removal of the inhibitors. The activities of other sulfated glycans, nonsulfated polyanions, dextran, and DEAE-dextran were compared with those of pentosan polysulfate and Congo red. This comparison provided evidence that the density of sulfation and molecular size are factors influencing anti-PrP-res activity of sulfated glycans. The relative potencies of these compounds corresponded well with their previously determined antiscrapie activities in vivo, suggesting that the prophylactic effects of sulfated polyanions may be due to inhibition of PrP-res accumulation. Since PrP-res amyloid is known to contain sulfated glycosaminoglycans, we reason that these inhibitors may competitively block an interaction between PrP and endogenous glycosaminoglycans that is essential for its accumulation in a protease-resistant, potentially amyloidogenic state.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 377 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3