A Gene Signature-Based Approach Identifies mTOR as a Regulator of p73

Author:

Rosenbluth Jennifer M.1,Mays Deborah J.1,Pino Maria F.1,Tang Luo Jia1,Pietenpol Jennifer A.1

Affiliation:

1. Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

Abstract

ABSTRACT Although genomic technologies have advanced the characterization of gene regulatory networks downstream of transcription factors, the identification of pathways upstream of these transcription factors has been more challenging. In this study we present a gene signature-based approach for connecting signaling pathways to transcription factors, as exemplified by p73. We generated a p73 gene signature by integrating whole-genome chromatin immunoprecipitation and expression profiling. The p73 signature was linked to corresponding signatures produced by drug candidates, using the in silico Connectivity Map resource, to identify drugs that would induce p73 activity. Of the pharmaceutical agents identified, there was enrichment for direct or indirect inhibitors of mammalian Target of Rapamycin (mTOR) signaling. Treatment of both primary cells and cancer cell lines with rapamycin, metformin, and pyrvinium resulted in an increase in p73 levels, as did RNA interference-mediated knockdown of mTOR. Further, a subset of genes associated with insulin response or autophagy exhibited mTOR-mediated, p73-dependent expression. Thus, downstream gene signatures can be used to identify upstream regulators of transcription factor activity, and in doing so, we identified a new link between mTOR, p73, and p73-regulated genes associated with autophagy and metabolic pathways.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3